

> Kindergarten MATHEMATICS Curriculum Map

Volusia County Schools

Mathematics Florida Standards

Table of Contents

I. Critical Areas for Mathematics in Grade K. 2
II. Mathematics Florida Standards: Kindergarten Overview 2
III. Standards for Mathematical Practice 3
IV. Common Addition and Subtraction Situations 4
V. Common Strategies 5
VI. 5E Learning Cycle: An Instructional Model 7
VII. Instructional Math Block 8
VIII. Units
A. Unit 1 9
B. Unit 2 18
C. Unit 3 30
D. Unit 4 40
IX. Appendices
Appendix A: Formative Assessment Strategies 52
Appendix B: Intervention/Remediation Resource Guide. 62
X. Glossary of Terms for the Mathematics Curriculum Map 63

Critical Areas for Mathematics in Kindergarten

In Kindergarten, instructional time should focus on two critical areas: (1) representing, relating and operating on whole numbers, initially with sets of objects; (2) describing shapes and space. More learning time in kindergarten should be devoted to number than to other topics.

1. Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such as counting objects in a set; counting out a given number of objects; comparing sets or numerals; and modeling simple joining and separating situations with sets of objects, or eventually with equations such as $5+2=7$ and $7-2=5$. (Kindergarten students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, but it is not required.) Students choose, combine, and apply effective strategies for answering quantitative questions, including quickly recognizing the cardinalities of small sets of objects, counting and producing sets of given sizes, counting the number of objects in combined sets, or counting the number of objects that remain in a set after some are taken away.
2. Students describe their physical world using geometric ideas (e.g., shape, orientation, spatial relations), measurable attributes (e.g., length or weight) and vocabulary. They identify, name, and describe basic two-dimensional shapes, such as squares, triangles, circles, rectangles, and hexagons, presented in a variety of ways (e.g., with different sizes and orientations), as well as threedimensional shapes such as cubes, cones, cylinders, and spheres. They use basic shapes and spatial reasoning to model objects in their environment and to construct more complex shapes.

Grade K Overview

Domain: Counting and Cardinality

Cluster 1: Know number names and count sequence.
Cluster 2: Count to tell the number of objects.
Cluster 3: Compare numbers.

Domain: Operations and Algebraic Thinking

Cluster 1: Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

Domain: Number and Operations in Base Ten
Cluster 1: Work with numbers 11-19 to gain foundations for place value.

Domain: Measurement and Data

Cluster 1: Describe and compare measureable attributes.
Cluster 2: Classify objects and count the number of objects in a category.

Domain: Geometry

Cluster 1: Identify and describe shapes.
Cluster 2: Analyze, compare, create, and compose shapes.

Grade K Math Curriculum Map
May 2015

Standards for Mathematical Practice

Students will:

1. Make sense of problems and persevere in solving them. (SMP.1)

Solving a mathematical problem involves making sense of what is known and applying a thoughtful and logical process which sometimes requires perseverance, flexibility, and a bit of ingenuity.
2. Reason abstractly and quantitatively. (SMP.2)

The concrete and the abstract can complement each other in the development of mathematical understanding: representing a concrete situation with symbols can make the solution process more efficient, while reverting to a concrete context can help make sense of abstract symbols.
3. Construct viable arguments and critique the reasoning of others. (SMP.3)

A well-crafted argument/critique requires a thoughtful and logical progression of mathematically sound statements and supporting evidence.
4. Model with mathematics. (SMP.4)

Many everyday problems can be solved by modeling the situation with mathematics.
5. Use appropriate tools strategically. (SMP.5)

Strategic choice and use of tools can increase reliability and precision of results, enhance arguments, and deepen mathematical understanding.
6. Attend to precision. (SMP.6)

Attending to precise detail increases reliability of mathematical results and minimizes miscommunication of mathematical explanations.
7. Look for and make use of structure. (SMP.7)

Recognizing a structure or pattern can be the key to solving a problem or making sense of a mathematical idea.
8. Look for and express regularity in repeated reasoning. (SMP.8)

Recognizing repetition or regularity in the course of solving a problem (or series of similar problems) can lead to results more quickly and efficiently.

Common Addition and Subtraction Situations

[^0] The other versions are more difficult.

Addition Strategies		
Name	Clarification	Student Work Sample
Counting All	- student counts every number - students are not yet able to add on from either addend, they must mentally build every number	$\begin{aligned} & 8+9 \\ & 1,2,3,4,5,6,7,8,9,10,11,12,13, \\ & 14,15,16,17 \end{aligned}$
Counting On	- transitional strategy - student starts with 1 number and counts on from this point	$\begin{aligned} & \hline 8+9 \\ & 8 \ldots, 10,11,12,13,14,15,16,17 \end{aligned}$
Doubles/Near Doubles	- student recalls sums for many doubles	$\begin{aligned} & 8+9 \\ & 8+(8+1) \\ & (8+8)+1 \\ & 16+1=17 \end{aligned}$
Making Tens	- student uses fluency with ten to add quickly	$\begin{aligned} & 8+9 \\ & (7+1)+9 \\ & 7+(1+9) \\ & 7+10=17 \end{aligned}$
Making Friendly Numbers/ Landmark Numbers	- friendly numbers are numbers that are easy to use in mental computation - student adjusts one or all addends by adding or subtracting to make friendly numbers - student then adjusts the answer to compensate	$\begin{aligned} & 23+48 \\ & 23+(48+2) \\ & 23+50=73 \\ & 73-2=71 \\ & \hline \end{aligned}$
Compensation	- student manipulates the numbers to make them easier to add - student removes a specific amount from one addend and gives that exact amount to the other addend	$\begin{aligned} & 8+6 \\ & 8-1=7 \quad 6+1=7 \\ & 7+7=14 \end{aligned}$
Breaking Each Number into its Place Value	- strategy used as soon as students understand place value - student breaks each addend into its place value (expanded notation) and like place value amounts are combined - student works left to right to maintain the magnitude of the numbers	$\begin{aligned} & 24+38 \\ & (20+4)+(30+8) \\ & 20+30=50 \\ & 4+8=12 \\ & 50+12=62 \end{aligned}$
Adding Up in Chunks	- follows place value strategy - student keeps one addend whole and adds the second addend in easy-to-use chunks - more efficient than place value strategy because student is only breaking apart one addend	$\begin{aligned} & \hline 45+28 \\ & 45+(20+8) \\ & 45+20=65 \\ & 65+8=73 \end{aligned}$

Children do not have to be taught a particular strategy. Strategies for computation come naturally to young children. With opportunity and encouragement, children invent strategies for themselves.

Subtraction Strategies

Subtraction Strategies		
Name	Clarification	Student Work Sample
Adding Up	- student adds up from the number being subtracted (subtrahend) to the whole (minuend) - the larger the jumps, the more efficient the strategy - student uses knowledge of basic facts, doubles, making ten, and counting on	14-7 7... 8,9,10,11,12,13,14 (+1 each jump) $\begin{aligned} & 7+3=10 \\ & 10+4=14 \\ & 3+4=7 \end{aligned}$
Counting Back/Removal	- strategy used by students who primarily view subtraction as taking away - student starts with the whole and removes the subtrahend in parts - student needs the ability to decompose numbers in easy-to-remove parts	$\begin{aligned} & 65-32 \\ & 65-(10+10+10+2) \\ & 65,55,45,35,33 \\ & 65-(30+2) \\ & 65-30=35 \\ & 35-2=33 \\ & \hline \end{aligned}$
Place Value	- student breaks each number into its place value (expanded notation) - student groups like place values and subtracts	$\begin{aligned} & 999-345 \\ & (900+90+9)-(300+40+5) \\ & 900-300=600 \\ & 90-40=50 \\ & 9-5=4 \\ & 600+50+4=654 \end{aligned}$
Keeping a Constant Difference	- student understands that adding or subtracting the same amount from both numbers maintains the distance between the numbers - student manipulates the numbers to create friendlier numbers	$\begin{aligned} & 123-59 \\ & 123+1=124 \\ & 59+1=60 \\ & 124-60=64 \end{aligned}$
Adjusting to Create an Easier Number	- strategy requires students to adjust only one of the numbers in a subtraction problem - student chooses a number to adjust, subtracts, then adjusts the final answer to compensate - students must understand part/whole relationships to reason through this strategy	$\begin{aligned} & 123-59 \\ & 59+1=60 \\ & 123-60=63 \end{aligned}$ I added 1 to make an easier number. $63+1=64$ I have to add 1 to my final answer because I took away 1 too many.

5E Learning Cycle: An Instructional Model

ENGAGEMENT	EXPLORATION	EXPLANATION	ELABORATION	EVALUATION
The engagement phase of the model is intended to capture students' interest and focus their thinking on the concept, process, or skill that is to be learned. During this engagement phase, the teacher is on center stage.	The exploration phase of the model is intended to provide students with a common set of experiences from which to make sense of the concept, process or skill that is to be learned. During the exploration phase, the students come to center stage.	The explanation phase of the model is intended to grow students' understanding of the concept, process, or skill and its associated academic language. During the explanation phase, the teacher and students share center stage.	The elaboration phase of the model is intended to construct a deeper understanding of the concept, process, or skill through the exploration of related ideas. During the elaboration phase, the teacher and students share center stage.	The evaluation phase of the model is intended to be used during all phases of the learning cycle driving the decision-making process and informing next steps. During the evaluation phase, the teacher and students share center stage.
What does the teacher do? - create interest/curiosity - raise questions - elicit responses that uncover student thinking/prior knowledge (preview/process) - remind students of previously taught concepts that will play a role in new learning - familiarize students with the unit	What does the teacher do? - provide necessary materials/tools - pose a hands-on/minds-on problem for students to explore - provide time for students to "puzzle" through the problem - encourage students to work together - observe students while working - ask probing questions to redirect student thinking as needed	What does the teacher do? - ask for justification/clarification of newly acquired understanding - use a variety of instructional strategies - use common student experiences to: - develop academic language explain the concept - use a variety of instructional strategies to grow understanding - use a variety of assessment strategies to gage understanding	What does the teacher do? - provide new information that extends what has been learned - provide related ideas to explore - pose opportunities (examples and non-examples) to apply the concept in unique situations - remind students of alternate ways to solve problems - encourage students to persevere in solving problems	What does the teacher do? - observe students during all phases of the learning cycle - assess students' knowledge and skills - look for evidence that students are challenging their own thinking - present opportunities for students to assess their learning - ask open-ended questions: - What do you think? - What evidence do you have? - How would you explain it?
What does the student do? - show interest in the topic - reflect and respond to questions - ask self-reflection questions: - What do I already know? - What do I want to know? - How will I know I have learned the concept, process, or skill? - make connections to past learning experiences	What does the student do? - manipulate materials/tools to explore a problem - work with peers to make sense of the problem - articulate understanding of the problem to peers - discuss procedures for finding a solution to the problem - listen to the viewpoint of others	What does the student do? - record procedures taken towards the solution to the problem - explain the solution to a problem - communicate understanding of a concept orally and in writing - critique the solution of others - comprehend academic language and explanations of the concept provided by the teacher - assess own understanding through the practice of selfreflection	What does the student do? - generate interest in new learning - explore related concepts - apply thinking from previous learning and experiences - interact with peers to broaden one's thinking - explain using information and experiences accumulated so far	What does the student do? - participate actively in all phases of the learning cycle - demonstrate an understanding of the concept - solve problems - evaluate own progress - answer open-ended questions with precision - ask questions
Evaluation of Engagement The role of evaluation during the engagement phase is to gain access to students' thinking during the pre-assessment event/activity. Conceptions and misconceptions currently held by students are uncovered during this phase. These outcomes determine the concept, process, or skill to be explored in the next phase of the learning cycle.	Evaluation of Exploration The role of evaluation during the exploration phase is to gather an understanding of how students are progressing towards making sense of a problem and finding a solution. Strategies and procedures used by students during this phase are highlighted during explicit instruction in the next phase. The concept, process, or skill is formally explained in the next phase of the learning cycle.	Evaluation of Explanation The role of evaluation during the explanation phase is to determine the students' degree of fluency (accuracy and efficiency) when solving problems. Conceptual understanding, skill refinement, and vocabulary acquisition during this phase are enhanced through new explorations. The concept, process, or skill is elaborated in the next phase of the learning cycle.	Evaluation of Elaboration The role of evaluation during the elaboration phase is to determine the degree of learning that occurs following a differentiated approach to meeting the needs of all learners. Application of new knowledge in unique problem solving situations during this phase constructs a deeper and broader understanding. The concept, process, or skill has been and will be evaluated as part of all phases of the learning cycle.	

Elementary Instructional Math Block

Time	Components	Description
5 minutes	Opening: Hook/Warm-up (engage/explore)	Teachers will engage students to create interest for the whole group mini lesson or to review previous learning targets by posing a hands-on mindson problem for students to explore.
15 minutes	Whole Group: Mini Lesson \& Guided Practice (explore/explain/evaluate)	During this time, the learning target will be introduced through explicit instruction by the teacher or through exploration/discovery by the students. Teachers model their thinking and teach or reinforce vocabulary in context. Teacher leads students to participate in guided practice of the new learning target.
		Students will explore using manipulatives and having conversations about their new learning. Students and teachers explain and justify what they are doing. Teachers are using probing questions to redirect student thinking during guided practice. Teachers provide explicit instruction to scaffold the learning if the majority of the students are struggling. Formative techniques are used to evaluate which students will need interventions and which students will need enrichment.
35-45 minutes	Small Group: Guided Practice \& Collaborative/ Independent Practice (explain/evaluate) explore/ elaborate)	The teacher will work with identified, homogeneous groups to provide intervention or enrichment. The students will explain their thinking through the use of a variety of instructional strategies. The teacher will evaluate student understanding and address misconceptions that still exist.
		Students will work in groups using cooperative structures or engaging in mathematical tasks. These activities are related to the mini lesson, previously taught learning targets, or upcoming standards. Students will continue to explore the learning targets by communicating with peers.
		All students will elaborate to construct a deeper understanding while engaging in collaborative and independent practices. Students will evaluate their own understanding through the practice of self-reflection.
5 minutes	Closure: Summarize (explain/evaluate)	The teacher will revisit the learning target and any student discoveries. Students will explain and evaluate their understanding of the learning target through a variety of techniques. The teacher will evaluate students' depth of understanding to drive future instruction.
Formative techniques occur throughout each piece of the framework.		

Students will: Standards for Mathematical Practice (to be embedded throughout instruction as appropriate) Students will: (to be embedded throughout instruction as appropriate)							
Make sense of problems and persevere in solving them. SMP. 1	Reason abstractly and quantitatively. SMP. 2	Construct viable arguments and critique the reasoning of others. SMP. 3	Model with mathematics. SMP. 4	Use appropriate tools strategically. SMP. 5	Attend to precision. SMP. 6	Look for and make use of structure. SMP. 7	Look for and express regularity in repeated reasoning. SMP. 8
MAFS Domain: Counting and Cardinality						Pacing: Weeks 1 - 9 August 24 - October 22	
Learning Targets						Standards	Vocabulary
Count to 100 by ones and by tens.						MAFS.K.CC.1.1	count count on digit eight five four group nine number numeral one sequence seven six ten three two
Students will: - count orally to 5 by ones. - count orally to 10 by ones.							
Count forward beginning from a given number within the known sequence instead of having to begin at 1.						MAFS.K.cC.1.2	
Students will: - count forward orally up to 5 from a given number in the correct sequence (i.e., instead of having to begin at 1). - count forward orally up to 10 from a given number in the correct sequence (i.e., instead of having to begin at 1). - understand that numbers follow the same order no matter where you start to count.							

 number name with one and only one object.
 b. Understand that the last number name said tells the number of objects counted.

The number of objects is the same regardless of their arrangement or the order in
which they were counted.
C. Understand that each successive number name refers to a quantity that is one larger

Students will:

- say number names in standard order (e.g., one, two, three, four, five ...).
- count objects by pairing them with one and only one number name (one-to-one correspondence).
- keep track of objects that have and have not been counted.

HINT: This is the foundation of counting.
E.g.,

The student touches (and may move to organize) the first object and says one, touches the second object and says two, touches the third object and says three..

- count objects in a group (i.e., up to 5 , up to 10) correctly, regardless of arrangement and order.
- say "how many" are in a group after counting all the objects.
- rearrange the objects after counting and tell "how many" in the group without recounting.
- understand that the last number name said represents the number of objects counted (cardinality).

HINT: The student should answer the same without counting again and be able to explain that it is the same because none have been added or taken away.

- say "how many" are in the group when one more object is added without recounting the whole group.
- understand that "one more" is the next counting number, with and without objects.

Students will:

- count or identify objects up to 5 , up to 10 , in a variety of arrangements (e.g., line, rectangular array, circle, scattered).
- show the correct number of objects when given a number 1-5, 0-10.

HINT: At first students will touch each item they count. Later, they will be able to just look and count.

Read and write numerals from 0 to 20. Represent a number of objects with a written numeral $0-20$ (with 0 representing a count of no objects).

Students will:

- read and write numerals 1-5, then 0-10.
- represent a group of objects with a written numeral 1-5, then 0-10
- write the numerals in order from 0 to 10, beginning at any number.

HINT: Reversals of numerals of anticipated. While reversals should be pointed out to students and correct formation modeled in instruction, the emphasis of the standard is on the use of numerals to represent the quantities rather than the correct handwriting formation of the actual numeral itself.

Students will:

MAFS.K.CC.3.6	compare count digit equal equal to fewer greater greater than groups less less than more more than number quantities same set
	MAFS.K.CC.3.7 compare count digit equal/equal to fewer greater greater than groups less/less than more/more than number quantities same set

Unit 1 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\begin{aligned} & \text { Fi } \\ & \text { 둥 } \end{aligned}$	SE/RMC/POD/A\&R: 3-1, 3-3, 3-5, 3-8 $5-1,5-3,5-6,5-8,5-11$ Math Start Readers: "Every Buddy Counts"	Count With Me Scrambled Eggs	Teacher Guide, p. 2 Giant Magnetic Write and Wipe Number Line Count \& Write Math Mats Magnetic Numbers		www.k-5mathteachingresources.com CC. 1 www.cpalms.org Let's Count to 5 Spiders Have 8 Legs https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 1 Lessons CC. 1 Formatives
$$	SE/RMC/POD/A\&R: $7-1,7-2$ Math Start Readers: "Jack the Builder"	Number Story Theater Too	Teacher Guide, p. 3 Magnetic Numbers Giant Magnetic Write and Wipe Number Line	Apples In a Bag Count On Counting On Count The Dots Game	www.k-5mathteachingresources.com CC. 2 www.cpalms.org Mouse Count- Counting on to 10 Counting on With Splash Counting to Ten With Ten Black Dots https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 2 Lessons CC. 2 Formatives
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{s}} \\ & \text { 心̇ } \\ & \text { U心 } \end{aligned}$	SE/RMC/POD/A\&R: $4-4,6-4,6-5,6-6,6-7$	You Can Count on Us Counting Crows Fish Tales	Teacher Guide, pp. 5-6 Reproducibles p. 7 Count \& Write Math Mats Early Math Activity Jars Magnetic Ten Frame Answer Board Jumbo Magnetic Ten Frame	Books and Bookmarks How Many Dots Are There Is It Still Seven Which Set has One More	www.k-5mathteachingresources.com CC. 4 www.cpalms.org And The Number Is Counting to Ten With Ten Black Dots Educational Games: Mingle \& Count https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 4 Lessons CC. 4 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 1 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\begin{aligned} & n \\ & \underset{\sim}{\circ} \text { 울 } \end{aligned}$		Counting Crows Fish Tales	Teacher Guide, p. 7 Count \& Write Math Mats Early Math Activity Jars Magnetic Ten Frame Answer Board Jumbo Magnetic Ten Frame Magnetic Numbers		www.k-5mathteachingresources.com CC. 5 www.cpalms.org And The Number Is Building Numbers to Five https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 5 Lessons CC. 5 Formatives
	SE/RMC/POD/A\&R: 3-2, 3-7, 3-9 5-5, 5-10, 5-13	Bears Wear Buttons	Teacher Guide, pp. 4-5 Reproducibles pp. 5-6 Count \& Write Math Mats Giant Magnetic Number Line	How Do I write The Number	www.k-5mathteachingresources.com CC. 3 www.cpalms.org Building Numbers to Five Building Sets of Ten Show me 1, 2, 3, 4, 5 Virtual Manipulative: Five Frame Image/Photograph: Clipart ETC: Counting Teaching Idea: My First Number Book Teaching Idea: How Many Seeds Teaching Idea: 1-10 Book https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 3 Lessons CC. 3 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 1 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	SE/RMC/POD/A\&R: 6-3 Math Start Readers: "Just Enough Carrots"	Fish Tales Comparing Catches	Teacher Guide, p. 8 Magnetic Ten Frame Answer Board Jumbo Magnetic Ten Frame Discovery Can: Counting \& Comparing	Greater Than/Less Than/ Equal to Which Side Has More Who Has More Dots	www.k-5mathteachingresources.com CC. 6 www.cpalms.org Comparing Sets https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 6 Lessons CC. 6 Formatives
$\begin{aligned} & \hat{N} \\ & \text { N゙ } \end{aligned}$	SE/RMC/POD/A\&R: $6-1,6-2$	Comparing Catches	Teacher Guide, pp. 10-11 Reproducibles p. 12 Discovery Can: Counting \& Comparing Giant Magnetic Write and Wipe Number Line Magnetic Numbers	Comparing Numbers Comparing Number Cards Game Which Is Greater Who Wins	www.k-5mathteachingresources.com CC. 7 www.cpalms.org Let's Count to Five Counting A World of Numbers https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 7 Lessons C. 7 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 1 Suggestions for Assessing Numbers 0 to 10

MAFS.K.CC.1.1 Count to 100 by ones and by tens.
(Note: For this unit you are only counting to 10)
The student counts correctly from $1-10$, with 100% accuracy, while the teacher observes.
MAFS.K.CC.1.2 Count forward from a given numeral within the known sequence (instead of having to begin at 1).
(Note: Students should understand that numbers follow the same order no matter where you start to count. Numbers are used to describe things at this stage.)

The teacher will say a numeral from $1-7$. The student will state the next three numerals in the correct sequence. (Example 5: 6, 7, 8)
MAFS.K.CC.1.3 Read and write numerals from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).
(Note: For this unit students are only writing to 10)
The student will write the numerals 1-10 without looking at a model. Inversions and reversals are acceptable at this point in the year.
MAFS.K.CC.2.4a Understand the relationship between numbers and quantities; connect counting to cardinality.
a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.

Student will orally count assorted groups of objects, from $1-10$, using one-to-one correspondence.
MAFS.K.CC.2.4b Understand the relationship between numbers and quantities; connect counting to cardinality.
b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.

The teacher will provide a set of objects in a straight line. The student counts the objects and tells "how many." The set is rearranged to a rectangular array, circle or scattered array and the student is asked "how many?" They should not have to recount the objects.
(Note: A student who counts them may not have the deep understanding of cardinality.)
MAFS.K.CC.2.4c Understand the relationship between numbers and quantities; connect counting to cardinality.
c. Understand that each successive numeral refers to a quantity that is one larger.
(Note: The student should clearly understand "one more" is the next counting number.)

Put out sets of $1-9$ items and ask "How many?" add one more and ask, "How many?" Student should say the next number without counting.

MAFS.K.CC.2.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.
(Note: For this unit students are only counting to 10)

The teacher will provide sets of objects (1-10). The student will quickly recognize the quantities and tell "how many."
"Students choose, combine, and apply effective strategies for answering quantitative questions, including quickly recognizing the cardinalities of small sets of objects..." http://www.corestandards.org/Math/Content/K/introduction

AND

The teacher will say a number $1-10$. The student will count out that number of objects and state the quantity.
MAFS.K.CC.3.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.

The teacher provides two sets of objects. The teacher asks the student to say if the first group is greater than, less than or equal to the second group. The student explains how they knew a quantity was greater than, less than or equal to.

MAFS.K.CC.3.7 Compare two numbers between 1 and 10 presented as written numerals.
 (Note: For this unit students are only comparing numbers to10)

The teacher secretly places between 1 and 10 marbles in a paper bag, and then shows the bag to the class. After shaking it enough times for students to hear the marbles inside, students guess how many marbles are in the bag. The students write their answers on index cards. The contents of the bag are revealed and counted out. The teacher writes the number representing the total on the board. The students line up on one or the other side of the teacher depending if they were greater than, less than or equal to the target number.
http://www.illustrativemathematics.org/standards/k8

Students will:		Standards for Mathematical Practice (to be embedded throughout instruction as appropriate)					
Make sense of problems and persevere in solving them. SMP. 1	Reason abstractly and quantitatively. SMP. 2	$\begin{aligned} & \text { Construct viable } \\ & \text { arguments and } \\ & \text { critique the } \\ & \text { reasoning of others. } \\ & \text { SMP. } 3 \end{aligned}$	Model with mathematics. SMP. 4	Use appropriate tools strategically. SMP. 5	Attend to precision. SMP. 6	Look for and mak use of structur SMP. 7	$\begin{array}{\|c} \begin{array}{c} \text { Look for and express } \\ \text { regulatity in repeated } \\ \text { reasoning. } \end{array} \\ \text { SMP. } 8 \end{array}$
MAFS Domains: Counting and Cardinality and Operations and Algebraic Thinking						Pacing: Weeks 10-21 October 26 - January 29	
Learning Targets						andards	Vocabulary
Count to 100 by ones and by tens. \quad MAFS.K.CC.1.1 ${ }^{\text {coun }}$							fifty forty fourteen group nineteen number sequence seventeen sixteen thirteen thirty twelve twenty twenty
Students will: - count orally to 20 by ones. - count orally to 50 by ones. - count orally to 100 by tens starting with 10 (e.g., $10,20,30,40,50, \ldots$). - use tools such as hundreds charts, number lines, and calendar activities to reinforce the repeated pattern that occurs when counting to 100 by tens. HINT: Counting by tens is a rote process, not the counting of objects							
Students will: - count forw HINT:	orally up to 20 fr ts should unders	m a given number and that numbers f	correct sequ the same ord	(i.e., instead of h sequence) no matte	ving to begin at 1). where you start to		

b. Understand that the last number name said tells the number of objects counted.

The number of objects is the same regardless of their arrangement or the order in which they were counted.
c. Understand that each successive number name refers to a quantity that is one larger.

Students will:

- say number names in standard order (e.g., one, two, three, four, five, ...).
- count objects by pairing them with one and only one number name (one-to-one correspondence).
- keep track of objects that have and have not been counted.

HINT: This is the foundation of counting.
E.g., The student touches (and may move to organize) the first object and says one, touches the second object and says two, touches the third object and says three...

- count objects in a group (up to 20) correctly, regardless of arrangement and order.
- say "how many" are in a group after counting all the objects.
- rearrange the objects after counting and tell "how many" in the group without recounting.
- understand that the last number name said represents the number of objects counted (cardinality).

HINT: The student should answer the same without counting again and be able to explain that it is the same because none have been added or taken away.

- say "how many" are in the group when one more object is added without recounting the whole group.
- understand that "one more" is the next counting number, with and without objects.

Students will:

- count or identify objects up to 20 in a variety of arrangements (e.g., line, rectangular array, circle, scattered)
- show the correct number of objects when given a number 0-20.

HINT: At first students will touch each item they count. Later, they will be able to just look and count.

Read and write numerals from 0 to 20 . Represent a number of objects with a written numeral $0-20$ (with 0 representing a count of no objects).

Students will:

- read and write numerals 0-20
- represent a group of objects with a written numeral 0-20.
- write the numerals in order from 0 to 20 , beginning at any number.

HINT: Reversals of numerals of anticipated. While reversals should be pointed out to students and correct formation modeled in instruction, the emphasis of the standard is on the use of numerals to represent the quantities rather than the correct handwriting formation of the actual numeral itself.
coun
count on digit/number/numeral eight eighteen eleven fifteen
four
fourteen
group
nine
nineteen
one
sequence
seven
seventeen
six
sixteen
ten
thirteen
three
twelve
two

- show addition to ten using objects, acting out situations, expressions, and equations.
- explain addition as putting together, adding to, combining, and joining.
- identify the mathematical symbols used to show addition.
- demonstrate the understanding of how objects can be joined (addition).
- show subtraction using objects, acting out situations, expressions, and equations.
- explain subtraction as taking apart and taking from.
- identify the mathematical symbols used to show subtraction.
- demonstrate the understanding of how objects can be taken from a group (subtraction).

HINT: Make sure students have MANY opportunities to concretely represent and solve addition and subtraction problems before introducing the plus (+), minus (-) and equal (=) sign.

Unit 2 Suggested Instructional Resources					
MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
		A Jump Start on Numbers Scrambled Eggs	Teacher Guide, p. 2 Reproducibles p. 2 Giant Magnetic Write and Wipe Number Line Count \& Write Math Mats Magnetic Numbers		www.k-5mathteachingresources.com CC. 1 www.cpalms.org Building Sets 11 and 12 Building Sets 13 and 14 Building Sets of 15 and 16 Building Sets of 17 and 18 Building Sets of 19 and 20 https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 1 Lessons CC. 1 Formatives
$$	$\begin{aligned} & \text { SE / RMC / POD / A\&R: } \\ & \text { 10-8 } \end{aligned}$	$\begin{aligned} & \text { Number Story } \\ & \hline \text { Theater Too } \end{aligned}$	Teacher Guide, pp. 3-4 Reproducibles p. 4 Magnetic Numbers Giant Magnetic Write and Wipe Number Line	Counting Strategies Count The Dots Game	www.k-5mathteachingresources.com CC. 2 www.cpalms.org Let's Go On A Counting Walk Counting on with SPLASH Let's Count to 20: Buildings Sets of 11 and 12 Let's Count to 20: Building Sets of 13 and 14 https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 2 Lessons CC. 2 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 2 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
		You Can Count on Us Counting Crows Fish Tales	Teacher Guide, pp.5-6 Count \& Write Math Mats Early Math Activity Jars Magnetic Ten Frame Answer Board Jumbo Magnetic Ten Frame Discovery Can: Counting \& Comparing	Conservation of Cardinality How Many Dots Are There Is It Still Seven How Many Cubes	www.k-5mathteachingresources.com CC. 4 www.cpalms.org Let's Go On A Counting Walk Let's Count to 20 https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 4 Lessons CC. 4 Formatives
		Counting Crows Fish Tales	Teacher Guide, p. 7 Reproducibles p. 10 Count \& Write Math Mats Early Math Activity Jars Magnetic Ten Frame Answer Board Jumbo Magnetic Ten Frame Magnetic Numbers	How Many Cubes Are There How Many Cubes Does Brianna Need How Many Cubes	www.k-5mathteachingresources.com CC.5 www.cpalms.org Vegetables...in Cupcakes? Let's Count H Steps Hopping Hippo Needs Help https://gradekcommoncoremath.wikispaces.h Cpss.org/Kindergarten CC. Lessons CC.5 Formatives
	$\begin{aligned} & \text { SE / A\&R: } \\ & 10-1,10-2,10-3,10-4, \\ & 10-5 \\ & \text { RMC / POD: } \\ & 10-1,10-3,10-4,10-5 \end{aligned}$	Bears Wear Buttons	Teacher Guide, pp. 4-5 Reproducibles pp. 5-6 Count \& Write Math Mats Giant Magnetic Number Line	Field Trip To the Fire station Matching Ten Frames To Numerals Model And Write Numbers You Can Do It Sam Fall Math Story	www.k-5mathteachingresources.com CC. 3 www.cpalms.org Let's Count to 20 Rubber Ducky, Where Are You? https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 3 Lessons CC. 3 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 2 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\stackrel{\Gamma}{\dot{\Pi}}$	SE/RMC/POD/A\&R: 3-4, 3-6, 5-2, 5-4, 5-7, 5-9, 5-12, 9-2,	Hopping Into Addition Counting Crows Fish Tales Number Story Theater Too Computation Model Boards	Teacher Guide pp.12-13 Reproducibles pp. 8, 9 Giant Magnetic Ten Frame Early Math Activity Jars Magnetic Ten Frame Answer Board Discovery Can: Addition \& Subtraction	Carly's Sleepover Modeling Addition and Subtraction Writing an Equation Writing Center More Fun With Numbers	www.k-5mathteachingresources.com OA. 1 www.cpalms.org Lady Bug Addition Lost Buttons Join Them Together/Take Them Away Bunny Addition Hopping Backwards on a Number Line Making Tens With Caterpillars https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten OA. 1 Lessons OA. 1 Formatives
$\stackrel{\dot{7}}{\dot{G}}$		My Friend Ten Balancing Bears Sweet Sums	Teacher Guide pp.16-17 Reproducibles pp. 8, 14 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line Magnetic Numbers Discovery Can: Addition \& Subtraction		www.k-5mathteachingresources.com OA. 4 www.cpalms.org Try For Five Using a Number Balance to Represent Decompositions Filling Crayon Boxes Monster Math https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten OA. 4 Lessons OA. 4 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD = Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 2 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
		Hopping Into Addition Bears Wear Buttons	Teacher Guide pp.14-15 Reproducibles pp. 8, 16 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line Discovery Can: Addition \& Subtraction	Fluency Within Five Fluency Within Five Addition Only Fluency Within Five Plus One Minus One Fluency Within Five Subtraction Only	www.k-5mathteachingresources.com OA. 5 www.cpalms.org Finding Fact Families Finding Fact Families-dominoes Sum Search Counting Fingers Quiz, Quiz, Trade Add t or Take It Away! https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten OA. 5 Lessons OA. 5 Formatives

Unit 2 Suggestions for Assessing Numbers 0 to 20
 and
 Introducing Addition and Subtraction

MAFS.K.CC. 1	Count to 100 by ones and by tens. (Note: For this unit you are only counting to 20) The student counts correctly from $1-20$, with 100% accuracy, while the teacher observes.
MAFS.K.CC.1.2	Count forward from a given numeral within the known sequence (instead of having to begin at 1). (Note: Students should understand that numbers follow the same order no matter where you start to count. Numbers are used to describe things at this stage.) The teacher states a numeral from 1-17. The student says the next three numerals in the correct sequence. (e.g., "15-16, 17, 18")
MAFS.K.CC.1.3	Read and write numerals from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects) The student will write the numerals 1-20 without looking at a model. Inversions and reversals are acceptable at this point in the year.
MAFS.K.CC.2.4a	Understand the relationship between numbers and quantities; connect counting to cardinality. a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Student will orally count assorted groups of objects, from 1 - 20, using one-to-one correspondence.
MAFS.K.CC.2.4b	Understand the relationship between numbers and quantities; connect counting to cardinality. b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. The teacher will provide a set of objects in a straight line. The student counts the objects and tells "how many." The set is rearranged to a rectangular array, circle or scattered array and the student is asked "how many?" They should not have to recount the objects. (Note: A student who counts them may not have a deep understanding of cardinality.)
MAFS.K.CC.2.4c	Understand the relationship between numbers and quantities; connect counting to cardinality. c. Understand that each successive numeral refers to a quantity that is one larger. (Note: The student should clearly understand "one more" is the next counting number.) Put out sets of $1-20$ items and ask "How many?" add one more and ask, "How many?" Student should say the next number without counting.

MAFS.K.CC.2.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as

 10 things in a scattered configuration; given a number from 1-20, count out that many objects.The teacher will provide sets of objects (1-20). The student will quickly recognize the quantities and tell "how many."
"Students choose, combine, and apply effective strategies for answering quantitative questions, including quickly recognizing the cardinalities of small sets of objects..." http://www.corestandards.org/Math/Content/K/introduction

AND
The teacher will say a number $1-20$. The student will count out that number of objects and state the quantity.
MAFS.K.OA.1.1 Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

Addition	Subtraction
Students should understand addition as putting together and adding to.	Students should understand subtraction as taking apart and taking from.

Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)
The teacher will show an addition or subtraction problem. The student will use any of the representations listed (objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations) to solve the problem.
(Note: Kindergarten students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, but it is not required.)

MAFS.K.OA.1.4 For any number from 1 to 9, find the number that makes 10 when added to a given number e.g., by using objects or drawings; record the answer with a drawing or an equation.

Teacher will give students a number. Students will use objects or drawings to find the number to make 10 when added to the given number. E.g., Teacher says 4, students use counters and ten frame to come up with 6 more make 10). They may say or write the equation $4+6=10$. Kindergarten students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, but it is not required.

MAFS.K.OA.1.5 Fluently add and subtract within 5 .

Teacher shows students four or five of the combinations, one at a time, that make 5 (i.e., $1+1,1+2,1+3,1+4,2+1,2+2,2+3,3+1$, $3+2,4+1,5-1,5-2,5-3,5-4,4-1,4-2,4-3,3-1,3-2,2-1$). These combinations should be on a whiteboard or index cards. Students should solve the problems quickly and efficiently. The student can respond orally or in writing.

Students will:

- add/subtract numbers within 10.
- understand and apply addition and subtraction through 10.
- solve addition and subtraction word problems using objects and drawings.

HINT: Refer to page 4 in the Kindergarten Mathematics Curriculum Map for clarification of Common Addition and Subtraction Situations. It is expected that students will become proficient with all situations.
add/adding to
addition
addend combining count on count back difference digit equal (=) equation $(5=3+2)$ five frame in all joining make 10 minus (-) one fewer one more plus (+) put together sets solve subtract (-) subtracting from subtraction (-) symbol take away taking apart taking from ten frame total

Students will:

- add/subtract numbers within 10.
- understand and apply addition and subtraction through 10
- solve addition and subtraction word problems within 10, using objects, drawings, and equations.
- use symbols for an unknown in a problem.

HINT: Refer to page 4 in the Kindergarten Mathematics Curriculum Map for clarification of Common Addition and Subtraction Situations. It is expected that students will become proficient with all situations.
E.g.,

Take From Change Unknown	Add to Start Unknown	Put Together / Take Apart Addend Unknown
7 apples were on the table. I ate some apples. Then there were 5 apples. How many apples did I eat?	Some dogs were sitting on the grass. Five more dogs came. Then there were seven dogs. How many dogs were on the grass before?	Tive apples are on the table. are green. How mand the rest applies are green?
$3+\square=5$		
$7-\Delta=5$		$5+5=7$

addition
addend combining count on count back difference digit equal (=) equation ($5=3+2$) five frame in all joining make 10 minus (-) one fewer one more plus (+) put together sets solve subtract (-) subtracting from subtraction (-) symbol take away taking apart taking from ten frame total

Fluently add and sub		add (+)
Students will: - compose numbers within 5 . - decompose numbers within 5 . - add numbers within 5 . - subtract numbers within 5 . HINT: Fluency is knowing how a number can be composed and decomposed and using that information to be flexible and efficient.		addition addend combining count on count back difference digit equal (=) equation $(5=3+2)$ in all joining make 10 minus (-) one fewer one more plus (+) put together sets solve subtract (-) subtracting from subtraction (-) symbol taking apart taking from ten frame total

Unit 3 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\begin{aligned} & \text { 동 } \\ & \bar{j} \dot{j} \end{aligned}$	SE/RMC/POD/A\&R: 10-11A, 10-11B	A Jump Start on Numbers Scrambled Eggs	Teacher Guide, p. 2 Reproducibles pp. 2, 3 Giant Magnetic Write and Wipe Number Line Magnetic Numbers	Count The Candy Corn Bundles Of Ten Count By Ones What Day Of School Is It	www.k-5mathteachingresources.com CC. 1 www.cpalms.org Counting biy 10's with Zero the Hero and Little Count Let Bullwinkle and His Friends Help you Count to 100 Curious George 100 Day https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 1 Lessons CC. 1 Formatives
		Number Story Theater Too	Teacher Guide, p. 3 Reproducibles pp. 2 Magnetic Numbers Giant Magnetic Write and Wipe Number Line	Count On	www.k-5mathteachingresources.com CC. 2 www.cpalms.org Pineville Playground https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten CC. 2 Lessons CC. 2 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 3 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\stackrel{N}{\text { N் }}$	SE/RMC/POD/A\&R: 8-1, 8-2, 8-3, 8-6, 9-1, 9-3, 9-6, 9-7 Math Start Readers: "Animals On Board"	Computation Model Boards	Teacher Guide pp.14-15 Reproducibles pp. 8, 13, 16 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line Magnetic Numbers Discovery Can: Addition \& Subtraction Early Math Activity Jars	Bowl Of Apples Word Problem More Fun With Numbers	www.k-5mathteachingresources.com OA. 2 www.cpalms.org Quacking Addition-Sums to 10 Finding Fact Families Finding Fact Families-dominoes Supermarket Sweep: Day 2 Counting Back and Counting On How Many Goldfish? Recording Two Ways https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten OA. 2 Lessons OA. 2 Formatives
	SE/RMC/POD/A\&R: $8-4,8-5,9-4,9-5$	$\begin{aligned} & \text { Computation Model } \\ & \text { Boards } \end{aligned}$	Teacher Guide pp. 14-15 Reproducibles pp. 8, 13, 16 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line Magnetic Numbers Discovery Can: Addition \& Subtraction Early Math Activity Jars	Cat and Dogs Word Problems Lizards On a Rock Two Tables	www.cpalms.org Hidden Cubes Roll and Find the Missing Ten What's Growing in Your Garden..working with word problems Splash! Jumping in and out of the Pond Add Up The Parts

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

36	Volusia County Schools
Mathematics Department	

Grade K Math Curriculum Map
May 2015

Unit 3 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\begin{aligned} & \underset{\sim}{亡} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	SE / RMC / POD / A\&R: 10-3A, 10-4A, 10-6, 10-6A, 10-7A, 10-7B, 10-7C	Ten-Gallon Hat	Teacher Guide pp.17-18 Reproducibles pp. 9, 16, 17 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line	Composing 13 Decomposing 15 Make Tens and Ones Ten Ones and Some Other Ones	www.k-5mathteachingresources.com NBT. 1 www.cpalms.org Ten and Some More (Exploring Numbers 11-20) Fireflies-Numbers 11-19 Decompose That Teen Number! https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten NBT. 1 Lessons NBT. 1 Formatives
		Sweet Sums	Teacher Guide pp.14-15 Reproducibles pp. 8, 16 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line Discovery Can: Addition \& Subtraction	Fluency Within Five Fluency Within Five Addition Only Fluency Within Five Plus One Minus One Fluency Within Five Subtraction Only	www.k-5mathteachingresources.com OA. 5 www.cpalms.org Finding Fact Families Finding Fact Families-dominoes Sum Search Counting Fingers Quiz, Quiz, Trade Add t or Take It Away! https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten OA. 5 Lessons OA. 5 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 3 Suggestions for Assessing Addition and Subtraction

and
 Numerals $\mathbf{0}$ to 100

MAFS.K.CC.1.1 Count to 100 by ones and by tens.
The student counts correctly from 1 -100, with 100% accuracy, while the teacher observes.
AND
Starting at 10 the student counts to 100 by 10s.
MAFS.K.CC.1.2 Count forward from a given numeral within the known sequence (instead of having to begin at 1).
(Note: Students should understand that numbers follow the same order no matter where you start to count. Numbers are used to describe things at this stage.)
Have students count forward beginning from a given number, instead of starting at 1 (e.g., $23-24,25,26,27,28 \ldots$ and $78-79,80,81$, $82 \ldots$). Stop them after 4 or 5 more numbers are added. This should probably be done at least twice (see the examples).
Note: Students should understand that numbers follow the same order no matter where you start to count.
MAFS.K.OA.1.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. (Students are not required to independently read the word problems.)

Teacher will tell the student an addition or subtraction word problem. The student will solve the problem using drawings, objects, fingers, or numbers.

Add to: Change Unknown	Take from: Result Unknown
Three cars were parked in the street. Some more cars came. Then there were five cars. How many cars came and parked next to the first three?	Five cats were lying on the bed. Two of them went outside to hunt for lizards. How many cats were still on the bed?
$\qquad 2+?=5$	$5-2=?$

MAFS.K.OA.1.a Use addition and subtraction within 10 to solve word problems involving both addends unknown, e.g., by using objects, drawings, and equations with symbols for the unknown numbers to represent the problem. (Students are not required to independently read the word problems.)

Teacher will tell the students an addition or subtraction word problem.

Add to: Start Unknown	Take from: Change Unknown
Some cats were sitting outside on the grass. Three more cats came and sat on the grass. Then there were five cats. How many cats were on the grass before?	Five children were in the pool. Some children decided to get out of the pool. Then there were three children. How many children got out of the pool?
$\qquad+3=5$	$5-?=3$

MAFS.K.NBT.1.1 Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18=10+8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.
(Note: Build toward the idea of ten ones as a 10 unit as a foundation for first grade.)
Have students draw or count out objects for a given number 11-19. Ask them to make a group of ten. Ask how many are left over. Ask them to express the two groups (e.g., 13 is 10 and 3 more -or- 13 is 1 group of 10 and 3 more - or -10 and 3 more makes 13) either by drawing a pictorial representation or, if the student chooses, writing an equation.
(Note: Kindergarten students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, but it is not required.)

MAFS.OA.1.5 Fluently add and subtract within 5.

Teacher shows students four or five of the combinations, one at a time, that make 5 (i.e., $1+1,1+2,1+3,1+4,2+1,2+2,2+3,3+1$, $3+2,4+1,5-1,5-2,5-3,5-4,4-1,4-2,4-3,3-1,3-2,2-1)$. These combinations should be on a whiteboard or index cards. Students should solve the problems quickly and efficiently. The student can respond orally or in writing.

Standards for Mathematical Practice Students will: (to be embedded throughout instruction as appropriate)							
Make sense of problems and persevere in solving them. SMP. 1	Reason abstractly and quantitatively. SMP. 2	Construct viable arguments and critique the reasoning of others. SMP. 3	Model with mathematics. SMP. 4	Use appropriate tools strategically. SMP. 5	Attend to precision. SMP. 6	Look for and make use of structure. SMP. 7	Look for and express regularity in repeated reasoning. SMP. 8
MAFS Domains: Measurement and Data Geometry Operations and Algebraic Thinking PACING: Weeks 32-39 April 18 - June 7							
Learning Targets						Standards	Vocabulary
Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.						MAFS.K.MD.2.3 am	amount category classify count group set size sort
Students will: - identify simi - classify (sort) - explain how - count the nu - determine th - label each s - compare the (e.g., Which	rities and difference objects into categ he objects were so mber of objects in g number of objects with a category. categories by num ategory has the m	s between objects ries/groups. ed. ven sets. in each category/gro or count st? Which category	, size, color). the least? Are	categories that	the same amou	unt of objects?).	

- describe measurable attributes of objects.
- describe measurable attributes of a given object.
- explain how objects can be measured (length, height, weight).

Directly compare two objects with a measureable attribute in common to see which object has "more" or "less of" the attribute and describe the
MAFS.K.MD.1.2

Students will:

- identify which object is longer (or shorter or taller).
- compare side by side objects by length.
E.g., A student may line up two blocks and say,
"The gray block is longer than the white one."

HINT: Do not find the actual length of each object.

- identify which object is heavier (or lighter).
- compare objects by weight by lifting one in one hand and the other in the other hand or using a balance scale.
E.g., A student may put a block on one side of the scale and a book on the other side, and say, "The book is a lot heavier than the block."
tallest
weight
HINT: Do not find the actual weight of the objects.
Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length units) end to end;
MAFS.K.MD.1.a understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limits to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

Students will:

```
\rightleftarrows\rightleftarrows
```

- use objects (e.g. paper clips, string, pencil) to express and understand length.
- use objects to measure items found in the environment.
- determine how to use a shorter object to measure the length of a longer object and explain why it is important to avoid gaps and overlaps.
- represent the length of the longer object with a whole number.

HINT: Use nonstandard units of measurement to measure items. All non-standard units must be the same size (e.g., use small paper clips OR large paper clips; do not mix them)

Students will: - name shapes correctly (square, triangle, rectangle, circle, hexagon). - explore many shapes in many different sizes and orientations. - name shapes correctly when their size and orientation is unusual or different. E.g., Students should be able to recognize that a square turned onto its vertex/corner ($\square \rightarrow$) is still a square. HINT: Students should use concrete models and drawings to represent their understanding of 2-dimensional shapes.		2- dimensional 3-dimensional above behind below beside bottom circle classify cone cube cylinder describe different flat group hexagon in front of inside left location middle next to outside position rectangle right same shape solid sort square top triangle vertex vertices		
Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").	MAFS.K.G.1.3			
Students will: - name two and three dimensional shapes. - identify two-dimensional shapes-flat (i.e., squares, circles, triangles, rectangles, and hexagons). - identify three-dimensional -solid (cubes, cones, cylinders, and spheres) - classify (sort) shapes/objects into two categories: 2-dimensional and 3-dimensional. - explain how shapes are classified / sorted.				
Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.	MAFS.K.G.1.1			
Students will: - name shapes in the environment (e.g., flat- two dimensional and solid-three dimensional). - describe the position and location of objects (e.g., above, below, on, beside, in front of, behind, and next to, left, inside, outside, top, middle, bottom). - act out position and location. - explain position and location to a partner. - explore shapes found in the environment (e.g., square, triangle, circle, rectangle). - explore shapes found in the environment (e.g., cube, cone, cylinder, sphere).	right, near, far,			

Students will:

- describe a shape by naming things like the number of sides, number of vertices (i.e., corners), and other special qualities.
- describe a three-dimensional shape by naming the two-dimensional shapes that make up the flat surfaces.
- compare two-dimensional shapes and describe their similarities and differences.
- compare three-dimensional shapes and describe their similarities and differences.
E.g., Circle the triangles in this collection of shapes.

Students will:

- draw shapes found in the environment.
- create a picture or model of something found in the environment using 2-dimensional shapes.

- build 2-dimensional and 3-dimensional models of an object from materials from the environment.
- identify the names of the shapes used in the picture or model.

Compose simple shapes to form larger shapes (e.g., "Can you join these two triangles with full sides touching to make a rectangle?")

Students will:

- put shapes together to make new larger shapes.
- use simple 2-dimensional shapes to form larger 2-dimensional shapes (e.g., "Can you join these $2 \boldsymbol{A} \boldsymbol{A}$ to make a rectangle?").
- name the new shape resulting from composing two simple shapes.

Fluently add and subtract with in 5.	MAFS.K.OA.1.5	add (+)		
Students will:	addition			
- compose numbers within 5.				
addend				
- decompose numbers within 5.				
combing				
- subtract within 5.			\quad	count on
:---				
count back				
difference				

Unit 4 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\begin{aligned} & \text { Nu } \\ & \dot{\sim} \\ & \mathbf{i} \end{aligned}$	SE/RMC/POD/A\&R:	Button Down	Teacher Guide p. 21 Discovery Can: Measurement \& Data Early Math Activity Jars	Shape Sort Sort Objects Sort The Tiles Sorting Animals Sorting Buttons Sorting Color Tiles	www.k-5mathteachingresources.com MD. 3 www.cpalms.org Properties Everywhere How Many Buttons? Shell Sort Sorting it All Out Caps For Sale, Anyone? Every Group Counts https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten MD. 3 Lessons MD. 3 Formatives
$\begin{aligned} & \bar{\Sigma} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	SE/RMC/POD/A\&R: 14-1, 14-1A, 14-2	Bears of All Sizes	Discovery Can: Measurement \& Data	Atributes of a Car Describing Lengths of Pencils Measurable Attributes of a Paper Clip Measurable Attributes of an Elephant	www.k-5mathteachingresources.com MD. 1 www.cpalms.org Magnificent Measure: The Weight of Things Tight Rope https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten MD. 1 Lessons MD. 1 Formatives
$\stackrel{\underset{\Sigma}{\Sigma}}{\stackrel{1}{2}}$	SE/RMC/POD/A\&R: 14-3, 14-5, 14-6, 148, 14-10	Bears of All Sizes Weight Lifters Rows of Bows	Teacher Guide p. 21 Discovery Can: Measurement \& Data	Compare Lengths OF Cubes Compare Two Bags Comparing Lengths Longer Than Taller or Shorter	www.k-5mathteachingresources.com MD. 2 www.cpalms.org Weighted Eggs The Long and Short of Candy https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten MD. 2 Lessons MD. 2 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook
Mathematics Department

Unit 4 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
		Turkey and Dressing	Teacher Guide pp.19-20 Reproducibles p. 15 Discovery Can: Measurement \& Data Hands on Math Center	Measure With Color Tiles Measure With Paper Clips Measuring the Width and Height of a Book Using Paper Clips to Measure Using Tiles to Measure	www.k-5mathteachingresources.com 1.MD. 2 www.cpalms.org Measuring End to End is a Win Win Measuring Madness Estimate and Measure-Sticky Math! https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten 1.MD. 2 Lessons 1.MD. 2 Formatives
্்ָֹ	SE/A\&R: 11-1, 11-2, 11-3, 11-4, 11-6, 11-9 RMC: 11-1, 11-2, 11-6, 11-9 POD: 11-4,11-6	Rough Enough Shapes Kindergarten 2-D Shapes Sneak A Peek At Shapes	Teacher Guide pp. 22-23 Reproducibles pp. 18-20 Discovery Can: Shapes 3D Geometric Shape Tub	Find That Shape Identify The Shape Is it still a Triangle Small and Large Spheres Name The Shape	www.k-5mathteachingresources.com G. 2 www.cpalms.org Building Triangles https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten G. 2 Lessons G. 2 Formatives
$\stackrel{\Gamma}{\text { 厄゙ }}$	SE/RMC/POD 12-1 A\&R: 12-1, 12-2	$\begin{aligned} & \text { Kindergarten 2-D } \\ & \hline \text { Shapes } \\ & \hline \end{aligned}$	Teacher Guide pp. 22-23 Reproducibles pp.18-20 Discovery Can: Shapes 3D Geometric Shape Tub	Comparing A Cylinder To A Circle Is It A Plane Or A Solid Spheres and Circles Squares And Cubes	www.k-5mathteachingresources.com G. 3 www.cpalms.org Eating Shapes https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten G. 3 Lessons G. 3 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 4 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
$\underset{\sim}{\tau}$		Going On A Shape Hunt Kindergarten 2-D Shapes	Teacher Guide p. 22-23 Reproducibles pp.18-20 Discovery Can: Shapes 3D Geometric Shape Tub	Changing Position Locations Of Shapes Shapes In A Classroom What Shape Where is The Sphere Name That Shape	www.k-5mathteachingresources.com G. 1 www.cpalms.org Where's the Shape? Where Am I? Hide and Seek Those Shapes Shape Hunt 3D Shape Video https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten G. 1 Lessons G. 1 Formatives
	SE/RMC/POD/A\&R: $12-3,12-5$	Shape Shifters Kindergarten 2-D Shapes 3D Explorations Solid Shape Relay	Teacher Guide pp. 23-24 Reproducibles pp.19-20 Discovery Can: Shapes 3D Geometric Shape Tub	Compare Hexagons Compare Rectangles and Triangles How Are These Shapes Alike	www.k-5mathteachingresources.com G. 4 www.cpalms.org Hide and Seek Those Shapes https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten G. 4 Lessons G. 4 Formatives
$\begin{gathered} \text { Ni } \\ \text { N் } \end{gathered}$	SE/RMC/POD/A\&R:	Making Models Kindergarten 2-D Shapes	Teacher Guide p. 24 Discovery Can: Shapes 3D Geometric Shape Tub	Draw a Triangle Hexagonal Tiles Model the Shapes Modeling the Shape of the Door	www.k-5mathteachingresources.com G. 5 www.cpalms.org Three Dimensional PlayDoh Shape Creator https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten G. 5 Lessons G. 5 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 4 Suggested Instructional Resources

MAFS	enVisionMATH	AIMS	Lakeshore	MFAS	Internet
	SE/POD/A\&R: RMC: $11-7,11-8$ 8	Shape to Shape Kindergarten 2-D Shapes	Teacher Guide p. 24 Discovery Can: Shapes 3D Geometric Shape Tub	Can You Make a Rectangle Compose a Hexagon Compose a Rectangle Compose a Square	www.k-5mathteachingresources.com G. 6 www.cpalms.org ShapeBot Patch Tool Shape Tool https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten G. 6 Lessons G. 6 Formatives
		Sweet Sums	Teacher Guide pp.14-15 Reproducibles pp. 8, 16 Giant Magnetic Ten Frame Magnetic Ten Frame Answer Board Jumbo Magnetic Number line Discovery Can: Addition \& Subtraction	Fluency Within Five Fluency Within Five Addition Only Fluency Within Five Plus One Minus One Fluency Within Five Subtraction Only	www.k-5mathteachingresources.com OA. 5 . www.cpalms.org Finding Fact Families Finding Fact Families-dominoes Sum Search Counting Fingers Quiz, Quiz, Trade Add t or Take It Away! https://gradekcommoncoremath.wikispaces.h cpss.org/Kindergarten OA. 5 Lessons OA. 5 Formatives

enVisionMATH: SE = Student Edition; RMC= Ready-Made Centers; POD= Problem of the Day; A\&R = Assessment and Reteaching Workbook

Unit 4 Suggestions for Assessing Measurement and Data and
 Geometry

MAFS.K.MD.2.3	Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. (Note: It is not appropriate to ask students to come up with category headings, they should be given)
	Teacher will provide any assortment of manipulatives and instruct each child to sort by color, shape, kind and size using sorting mats. For E.g., The teacher gives the student a bag of attribute links. 1. The student sorts them by color. 2. The student sorts them by size. 3. The student sorts them by shape.
MAFS.K.MD.1.1	Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. Teacher will provide an object such as a paperclip, pencil, textbook, shoe, etc. Student will describe the object using measurable attributes. (e.g., This shoe is short and light. This pencil is long and light. This book is small and heavy.)
MAFS.K.MD.1.2	Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter (Note: This is side-by-side comparison.)
	Teacher will provide two objects of different lengths/heights. Student will organize the objects by their length/height and will describe the order using measurement concepts. (This pencil is taller than that crayon.)
	AND
	Teacher will provide two objects of different weights. Using a balance scale the student will compare two objects using measurement concepts. (This book is heavier than this eraser.) Note: Do not find the actual weight of each object; make comparisons based on the balance outcome.
	AND
	Teacher will provide two objects that are distinctly different temperatures. Student will describe the objects based on their temperature. (This bottle of water is colder than this snap cube.)
MAFS.K.MD.1a	Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.
	Teacher will provide different objects (found in the environment) to measure with items such as, paper clips, snap cubes. Count the number of units as a whole number.

Correctly name shapes regardless of their orientations or overall size.

Teacher will provide a variety of shapes (square, circle, triangle, rectangle, hexagon, cube, cone, cylinder, sphere). Student will correctly name that shape. Note: Students should be able to recognize that a square turned onto its vertex $\square \rightarrow \Delta$ is still a square and not a rhombus; a rhombus does not have 4 right angles.)

MAFS.K.G.1.3 Identify shapes as 2-dimensional (lying in a plane "flat") or 3-dimensional ("solid").

Teacher will present a collection of 2 - and 3 -dimensional shapes (square, circle, triangle, rectangle, hexagon, cube, cone, cylinder, and sphere). The student identifies which shapes are 2 -dimensional and which are 3 -dimensional.

MAFS.K.G.1.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.

The teacher will set up situations using shapes and classroom objects (e.g., a square below a chair, a circle behind a book, etc.). The student will describe the position of the shape as it relates to the classroom object.

MAFS.K.G.2.4 Analyze and compare 2- and 3-dimensional shapes in different sizes and orientations, using informal language, to describe their similarities, differences, parts (number of sides and vertices) and other attributes. (e.g., having sides of equal length)

Show students 2 shapes.
Ask: How are these shapes the same?
How are these shapes different?
How many sides do they each have?
How many vertices (corners) do they each have?
(etc...)
Illustrative Mathematics E.g., http://www.illustrativemathematics.org/standards/k8 (K, Geometry (show all), 4, see illustrations)

MAFS.K.G.2.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.

Have students use 2-dimensional shapes (square, circle, triangle, rectangle and hexagon) to draw a picture of something such as a house, furniture, plant, etc

AND

Give students toothpicks, chenille stems, string, yarn, marshmallows, straws, clay, etc. to create 3-dimensional shapes (cube, cone, cylinder, and sphere).

MAFS.K.G.2.6 Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"

Ask students to use simple 2-dimensional shapes to form larger 2-dimensional shapes and name the new shape.
(i.e.

(i.e. $2 \Delta \Delta+\square=\square$ rectangle)

MAFS.K.OA.1.5 Fluently add and subtract within 5.

Teacher shows students four or five of the combinations, one at a time, that make 5 (i.e., $1+1,1+2,1+3,1+4,2+1,2+2,2+3,3+1$, $3+2,4+1,5-1,5-2,5-3,5-4,4-1,4-2,4-3,3-1,3-2,2-1)$. These combinations should be on a whiteboard or index cards. Students should solve the problems quickly and efficiently. The student can respond orally or in writing.

Formative Assessment Strategies
 Mathematics K-5

Name		Additional Information	
A \& D Statements	A \& D Statements analyze a set of "fact or fiction" statements. First, students may choose to agree or disagree with a statement or identify whether they need more information. Students are asked to describe their thinking about why they agree, disagree, or are unsure. In the second part, students describe what they can do to investigate the statement by testing their ideas, researching what is already known, or using other means of inquiry.	Statement	How can I find out?
		9/16 is larger than $5 / 8$. $\begin{array}{ll}\text { __agree } & \text { disagree } \\ \text { __not sure } & \text { __it depends on }\end{array}$ My thoughts:	
		http://www.mathsolutions.com/documents/How to Get Students Talking.pdf	
Agreement Circles	Agreement Circles provide a kinesthetic way to activate thinking and engage students in mathematical argumentation. Students stand in a circle as the teacher reads a statement. They face their peers still standing and match themselves up in small groups of opposing beliefs. Students discuss and defend their positions. After some students defend their answers, the teacher can ask if others have been swayed. If so, stand up. If not, what are your thoughts? Why did you disagree? After hearing those who disagree, does anyone who has agreed want to change their minds? This should be used when students have had some exposure to the content.	There 20 cups in a gallon. 2/3 equivalent to 4/6. A square is a rectangle. Additional Questioning: Has anyone been swayed What is your new thinking? Why do you disagree with Does anyone want to chan What convinced you to cha Use when students have h content. http://formativeassessment greement+Circles	Agree or disagree? Agree or disagree? Agree or disagree? new thinking? at you have heard? their mind? your mind? sufficient exposure to rrow.wikispaces.net/A
Annotated Student Drawings	Annotated Student Drawings are student-made, labeled illustrations that visually represent and describe students' thinking about mathematical concepts. Younger students may verbally describe and name parts of their drawings while the teacher annotates it for them.	Represent 747 by drawing Represent $3 \times 2=2 \times 3$ by dra Describe the meaning of 5 $\left\{\begin{array}{l} 5 \text { moles } \\ f_{6}^{6} \text { tenth } \\ 0 \text { hundreth } \\ 5.5 .02 \end{array}\right.$	s and cubes. garrays. //formativeassessmen row.wikispaces.net/A ated+Student+Drawin

Formative Assessment Strategies/Mathematics K-5 (continued)		
Name	Description	Additional Information
Card Sorts	Card Sorts is a sorting activity in which students group a set of cards with pictures or words according to certain characteristics or category. Students sort the cards based on their preexisting ideas about the concepts, objects, or processes on the cards. As students sort the cards, they discuss their reasons for placing each card into a designated group. This activity promotes discussion and active thinking.	http://teachingmathrocks.blogspot.com/2012/09/voc abulary-card-sort.html
Commit and Toss	Commit and Toss is a technique used to anonymously and quickly assess student understanding on a topic. Students are given a question. They are asked to answer it and explain their thinking. They write this on a piece of paper. The paper is crumpled into a ball. Once the teacher gives the signal, they toss, pass, or place the ball in a basket. Students take turns reading their "caught" response. Once all ideas have been made public and discussed, engage students in a class discussion to decide which ideas they believe are the most plausible and to provide justification for the thinking.	Stephanie eats 5 apple slices during lunch. When she gets home from school she eats more. Which statement(s) below indicates the number of apple slices Stephanie may have eaten during the day? a. She eats 5 apple slices. b. She eats 5 apple slices at least. c. She eats more than 5 apple slices. d. She eats no more than 5 apple slices. e. I cannot tell how many apple slices were eaten. Explain your thinking. Describe the reason for the answer(s) you selected.
Concept Card Mapping	Concept Card Mapping is a variation on concept mapping. Students are given cards with the concepts written on them. They move the cards around and arrange them as a connected web of knowledge. This strategy visually displays relationships between concepts.	

Formative Assessment Strategies/Mathematics K-5 (continued)			
Name	Description	Additional Information	
Friendly Talk Probes	Friendly Talk Probes is a strategy that involves a selected response section followed by justification. The probe is set in a real-life scenario in which friends talk about a math-related concept or phenomenon. Students are asked to pick the person they most agree with and explain why. This can be used to engage students at any point during a unit. It can be used to access prior knowledge before the unit begins, or assess learning throughout and at the close of a unit.	Four friends were studying for their math test. They each had different ideas about finding the mean in a set of dala. This is what they said: Nancy: I think the mean is the number that shows up the most times in our data set. Alvin: I think you subtract the largest number from the smatlest number to find the mean. Cara: I think the mean has to be one of the numbers in our set of data. It is the one that is in the middle of the data spread. Truax: I think you find the mean by adding up all the data points and dividing by the number of data points. Circle the friend you agree with the most. Explain why you agree with that friend and not the others.	
		http://www.sagepub.com/upmdata/37758 chap 1 tobey.pdf	
Human Scatterplots	Human Scatterplot is a quick, visual way for teacher and students to get an immediate classroom snapshot of students' thinking and the level of confidence students have in their ideas. Teachers develop a selective response question with up to four answer choices. Label one side of the room with the answer choices. Label the adjacent wall with a range of low confidence to high confidence. Students read the question and position themselves in the room according to their answer choice and degree of confidence in their answer.	A : \% :	(:) :
		: : : $:$:
			(i) : $\%$: $: \cdot$
		Low [Comidenco Lovel \longrightarrow — Hion	
I Used to Think... But Now I Know...	I Used to Think...But Now I Know is a self-assessment and reflection exercise that helps students recognize if and how their thinking has changed at the end of a sequence of instruction. An additional column can be added to include...And This Is How I Learned It to help students reflect on what part of their learning experiences helped them change or further develop their ideas.	IUSED TO THINK...	BUT NOW I KNOW...
		AND THIS IS HOW I LEARNED IT	

Formative Assessment Strategies/Mathematics K-5 (continued)		
Name	Description	Additional Information
Look Back	Look Back is a recount of what students learned over a given instructional period of time. It provides students with an opportunity to look back and summarize their learning. Asking the students "how they learned it" helps them think about their own learning. The information can be used to differentiate instruction for individual learners, based on their descriptions of what helped them learn.	What I Learned ${ }^{\text {a }}$ How I Learned it
Muddiest Point	Muddiest Point is a quick-monitoring technique in which students are asked to take a few minutes to jot down what the most difficult or confusing part of a lesson was for them. The information gathered is then to be used for instructional feedback to address student difficulties.	Scenario: Students have been learning about the attributes of three-dimensional shapes. Teacher states, "I want you to think about the muddiest point for you so far when it comes to three-dimensional shapes. Jot it down on this notecard. I will use the information you give to me to think about ways to help you better understand three-dimensional shapes in tomorrow's lesson."
Odd One Out	Odd One Out combines similar items/terminology and challenges students to choose which item/term in the group does not belong. Students are asked to justify their reasoning for selecting the item that does not fit with the others. Odd One Out provides an opportunity for students to access scientific knowledge while analyzing relationships between items in a group.	Show students three figures and ask: Which is the odd one out? Explain your thinking. Ask students to choose a different odd one out and explain their thinking.
Partner Speaks	Partner Speaks provides students with an opportunity to talk through an idea or question with another student before sharing with a larger group. When ideas are shared with the larger group, pairs speak from the perspective of their partner's ideas. This encourages careful listening and consideration of another's ideas.	Today we are going to explore different ways to add three-digit numbers together. What different kinds of strategies can you use to add $395+525$? Turn to your partner and take turns discussing your strategies. Listen carefully and be prepared to share your partner's ideas.

Formative Assessment Strategies/Mathematics K-5 (continued)		
Name	Description	Additional Information
A Picture Tells a Thousand Words	A Picture Tells a Thousand Words, students are digitally photographed during a mathematical investigation using manipulatives or other materials. They are given the photograph and asked to describe what they were doing and learning in the photo. Students write their description under the photograph. The images can be used to spark student discussions, explore new directions in inquiry, and probe their thinking as it relates to the moment the photograph was snapped. By asking students to annotate a photo that shows the engaged in a mathematics activity or investigation helps them activate their thinking about the mathematics, connect important concepts and procedures to the experience shown in the picture and reflect on their learning. Teachers can better understand what students are gaining from the learning experience and adjust as needed.	
Question Generating	Question Generating is a technique that switches roles from the teacher as the question generator to the student as the question generator. The ability to formulate good questions about a topic can indicate the extent to which a student understands ideas that underlie the topic. This technique can be used any time during instruction. Students can exchange or answer their own questions, revealing further information about the students' ideas related to the topic.	Question Generating Stems: - Why does ? \qquad - Why do you think \qquad ? - Does anyone have a different way to explain ? \qquad - How can you prove \qquad ? - What would happen if \qquad ? - Is \qquad always true? - How can we find out if \qquad ?
Sticky Bars	Sticky Bars is a technique that helps students recognize the range of ideas that students have about a topic. Students are presented with a short answer or multiple-choice question. The answer is anonymously recorded on a Post-it note and given to the teacher. The notes are arranged on the wall or whiteboard as a bar graph representing the different student responses. Students then discuss the data and what they think the class needs to do in order to come to a common understanding.	

Formative Assessment Strategies/Mathematics K-5 (continued)		
Name	Description	Additional Information
Thinking Log	Thinking Logs is a strategy that informs the teacher of the learning successes and challenges of individual students. Students choose the thinking stem that would best describe their thinking at that moment. Provide a few minutes for students to write down their thoughts using the stem. The information can be used to provide interventions for individuals or groups of students as well as match students with peers who may be able to provide learning support.	- I was successful in.. - I got stuck... - I figured out. - I got confused when...so I... - I think I need to redo... - I need to rethink... - I first thought....but now I realize... - I will understand this better if I ... - The hardest part of this was... - I figured it out because... - I really feel good about the way...
Think-Pair-Share	Think-Pair-Share is a technique that combines thinking with communication. The teacher poses a question and gives individual students time to think about the question. Students then pair up with a partner to discuss their ideas. After pairs discuss, students share their ideas in a small-group or whole-class discussion. (Kagan) NOTE: Varying student pairs ensures diverse peer interactions.	
Three-Minute Pause	Three-Minute Pause provides a break during a block of instruction in order to provide time for students to summarize, clarify, and reflect on their understanding through discussion with a partner or small group. When three minutes are up, students stop talking and direct their attention once again to the teacher, video, lesson, or reading they are engaged in, and the lesson resumes. Anything left unresolved is recorded after the time runs out and saved for the final three-minute pause at the end.	
Traffic Light Cards/Cups/Dots	Traffic Light Cards/Cups/Dots is a monitoring strategy that can be used at any time during instruction to help teachers gauge student understanding. The colors indicate whether students have full, partial, or minimal understanding. Students are given three different-colored cards, cups, or dots to display as a form of self-assessment revealing their level of understanding about the concept or skill they are learning.	

Formative Assessment Strategies/Mathematics K-5 (continued)		
Name	Description	Additional Information
Two-Minute Paper	Two-Minute Paper is a quick way to collect feedback from students about their learning at the end of an activity, field trip, lecture, video, or other type of learning experience. Teacher writes two questions on the board or on a chart to which students respond in two minutes. Responses are analyzed and results are shared with students the following day.	- What was the most important thing you learned today? - What did you learn today that you didn't know before? - What important question remains unanswered for you? - What would help you learn better tomorrow?
Two Stars and a Wish	Two Stars and a Wish is a way to balance positive and corrective feedback. The first sentence describes two positive commendations for the student's work. The second sentence provides one recommendation for revision. This strategy could be used teacher-tostudent or student-to-student.	
Two-Thirds Testing	Two-Thirds Testing provides an opportunity for students to take an ungraded "practice test" two thirds of the way through a unit. It helps to identify areas of difficulty or misunderstanding through an instructional unit so that interventions and support can be provided to help them learn and be prepared for a final summative assessment. Working on the test through discussions with a partner or in a small group further develops and solidifies conceptual understanding.	

Formative Assessment Strategies/Mathematics K-5 (continued)		
Name	Description	Additional Information
What Are You Doing and Why?	What Are You Doing and Why? is a short, simple monitoring strategy to determine if students understand the purpose of the activity or how it will help them learn. At any point in an activity the teacher gets the students' attention and asks "What are you doing and why are you doing it?" Responses can be shared with the class, discussed between partners, or recorded in writing as a One-Minute Paper to be passed in to the teacher. The data are analyzed by the teacher to determine if the class understands the purpose of the activity they are involved in.	Scenario: Students are decomposing a fraction into the sum of two or more of its parts. $\frac{a}{8}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \quad \frac{a}{8}=\frac{2}{8}+\frac{1}{8} \quad \frac{a}{8}=\frac{a}{8}+\frac{0}{8}$ Teacher stops students in their tracks and asks, "What are you do and why are you doing it?"
Whiteboarding	Whiteboarding is a technique used in small groups to encourage students to pool their individual thinking and come to a group consensus on an idea that is shared with the teacher and the whole class. Students work collaboratively around the whiteboard during class discussion to communicate their ideas to their peers and the teacher.	http://www.educationworl d.com/a lesson/02/lp251 -01.shtml
3-2-1	3-2-1 is a technique that provides a structured way for students to reflect upon their learning. Students respond in writing to three reflective prompts. This technique allows students to identify and share their successes, challenges, and questions for future learning. Teachers have the flexibility to select reflective prompts that will provide them with the most relevant information for data-driven decision making.	Sample 1 - 3 - Three key ideas I will remember - 2 - Two things I am still struggling with - $\mathbf{1 - O n e}$ thing that will help me tomorrow Sample 2

enVisionMATH Intervention/Remediation Resource Guide

Resource	Location	Description
Intervention Lessons (Student and Teacher pages)	Diagnosis and Intervention System - a separate kit of materials	Use for pre-requisite skills or remediation. For grades K-2, the lessons consist of a teacher-directed activity followed by problems. In grades 3-5, the student will first answer a series of questions that guide him or her to the correct answer of a given problem, followed by additional, but similar problems.
Meeting Individual Needs	Teacher's Edition - planning section of each Topic	Provides topic-specific considerations and activities for differentiated instruction of ELL, ESE, Below-Level and Advanced students.
Differentiated Instruction	Teacher's Edition - Close/Assess and Differentiate step of each lesson	Provides lesson-specific activities for differentiated instruction for Intervention, On-Level and Advanced levels.
Error Intervention	Teacher's Edition - Guided Practice step of each lesson	Provides on-the-spot suggestions for corrective instruction.
ELL Companion Lesson	Florida Interactive Lesson Support for English Language Learners	Includes short hands-on lessons designed to provide support for teachers and their ELL students, useful for struggling students as well

GLOSSARY OF TERMS

Pacing: the recommended timeline determined by teacher committee for initial delivery of instruction in preparation for State Assessments
Domain: the broadest organizational structure used to group content and concepts within the curriculum map
Cluster: a sub-structure of related standards; standards from different clusters may sometimes be closely related because mathematics is a connected subject

Standard: a definition of what students should understand and be able to do
Learning Targets/Skills: the content knowledge, processes, and behaviors students should exhibit for mastery of the standards
Hints: additional information that serves to further clarify the expectations of the learning targets/skills to assist with instructional decision-making processes

Vocabulary: the content vocabulary and other key terms and phrases that support mastery of the learning targets and skills; for teacher and student use alike

Standards for Mathematical Practice: processes and proficiencies that teachers should seek to purposefully develop in students
Resource Alignment: a listing of available, high quality and appropriate materials, strategies, lessons, textbooks, videos and other media sources that are aligned with the learning targets and skills; recommendations are not intended to limit lesson development

Common Addition and Subtraction Situations: a comprehensive display of possible addition and subtraction problem solving situations that involve an unknown number in varied locations within an equation

Formative Assessment Strategies: a collection of assessment strategies/techniques to help teachers discover student thinking, determine student understanding, and design learning opportunities that will deepen student mastery of standards

Intervention/Remediation Guide: a description of resources available within the adopted mathematics textbook resource (enVisionMATH) that provides differentiated support for struggling learners-ESE, ELL, and General Education students alike

[^0]: $=$ sign does not always mean makes or results in, but always does mean is the same number as.

